Redes convolucionales

nociones basica para se aplicadas
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Plan de la presentacion

@ Informacién local vs informacién global
@ ;Coémo son las redes neuronales convolucionales?
© ;Cémo funciona esto?

@ Consideraciones finales

11 de junio de 2019 3/1


mailto:julio.waissman@unison.mx

i Qué es el reconocimiento de imagenes
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Imagen

Imagen original
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Imagen como matriz de MEeS
Detalle
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Filtro convolucional

Image Matrix

0 Kernel Matrix

Output Matrix
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Filtro convolucional

Kernel Matrix
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Filtro convolucional

Kernel Matrix
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Filtro convolucional

0 0 0 0 0 0 Kernel Matrix
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Image Matrix 0%x0+105%—1+102*0 Output Matrix
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Filtro convolucional

0 0 Kernel Matrix

97 | 96 0 -1 0 320

101 | 102 -1 5 -1 210 | 89 | 111
102 | 100 0 1 0

0 99 | 101 | 106 | 104 | 99

0 104 | 104 | 104 | 100 | 98

Image Matrix 0%x0+0x—-14+0%0 Output Matrix
4+0%—1+4+ 1055+ 102 % —1
+0%0+103%x—1+99x0 =320

11 de junio de 2019 1/1


mailto:julio.waissman@unison.mx

Resultado

Original Filtrada
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Los filtros pueden ser extremos

-1 -1 -1
Kernel=]-1 8 -1
-1 -1 -1
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Y el procesamiento de imagenes de hace asi. ..

@ Primero se seleccionan muchos filtros, dependiendo de lo que queremos

@ Se ajustan los filtros para representar las caracteristicas principales
@ Se pueden aplicar filtros a las imagenes filtradas
@ Se utilizan otras técnicas (submuestreo, histograma, .. .)

@ Se convierte la imagen en un enorme vector de caracteristicas
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.Y porquiié nos interesaria el reconocimiento de imagenes?

@ Una imagen es informacién organizada en varias dimensiones

@ Las informacién temporal se puede organizar en dimensiones
(dias/afios, etc.)

o La informacién adjacete a un dato se asume mas importante que la
informacién mas lejana

@ Muchos problemas se pueden representar de esta forma (; Cémo
podrian representarse como imagenes los datos de demanda de
energia?)
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CNNs- key ideas

FULLY CONNECTED NEURAL NET

Example: 1000x1000 image
- 1M hidden units
m) 10712 parameters!!!

- Spatial correlation is local
- Better to put resources elsewhere!
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CNNs- key ideas

LOCALLY CONNECTED NEURAL NET

Example: 1000x1000 image
1M hidden units

Filter size: 10x10
100M parameters

Filter/Kernel/Receptive field:
input patch which the hidden unit is
connected to.
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CNNs- key ideas

LOCALLY CONNECTED NEURAL NET

STATIONARITY? Statistics are
similar at different locations
(translation invariance)

Example: 1000x1000 image
1M hidden units

Filter size: 10x10
100M parameters
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CNNs- key ideas

CONVOLUTIONAL NET

Share the same parameters across
different locations:
Convolutions with learned kernels
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CNNs- key ideas

CONVOLUTIONAL NET

E.g.: 1000x1000 image
100 Filters

Filter size: 10x10
10K parameters
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CNNs- key ideas

CONVOLUTIONAL NET

hidden unit /

filter response
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CNNs- key ideas

CONVOLUTIONAL LAYER

output feature map

/ 3D kernel

Input feature maps
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CNNs- key ideas

CONVOLUTIONAL LAYER

output feature maps

Input feature maps / /

NOTE: the nr. of output feature maps is
usually larger than the nr. of input feature maps/
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CNNs- key ideas

CONVOLUTIONAL LAYER

Convolutional
Layer

input feature maps output feature maps

NOTE: the nr. of output feature maps is
usually larger than the nr. of input feature maps
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CNNs- key ideas

POOLING

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.
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CNNs- key ideas

POOLING LAYER

NOTE:
1) the nr. of output feature maps is the
same as the nr. of input feature maps
2) spatial resolution is reduced

— patch collapsed into one value

— use of stride > 1

Input feature maps output feature maps
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CNNs- key ideas

POOLING LAYER

NOTE:
1) the nr. of output feature maps is the
same as the nr. of input feature maps
2) spatial resolution is reduced

— patch collapsed into one value

— use of stride > 1

// // Pooling Layer @
- output feature maps

input feature maps
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CNNs- typical architecture

C3:f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 p @

32x32 S2: f. maps

6@14x14

C5: layer
5 y F6 layer OUTPUT

‘ ‘ FuII comLecuon Gau55|an connections
Convolutions Subsampling Convolutions Subsampllng Full connectlon

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.
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CNNs- typical architecture

One stage (zoom)

Whole system

Input Class
Image Labels
Fully Conn.

Layers

1%t stage 2" stage 3" stage
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CNNSs - conclusion

* Connect each hidden unit to a small
patch of the input.

* Share the weight across hidden units.

* Subsampling layers are useful to reduce
computational burden and increase
Invariance.
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Redes convolucionales (CNN)

Arquitectura general

Samoyed (16); Papillon (5.7);
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Redes convolucionales (CNN)

Desempefio en tratamiento de imagenes

Resultados aplicados al conjunto de datos ImageNet
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...y colorin colorado . ..

Muchas gracias por su atencion
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