Introduccion a las redes neuronales artificiales

Julio Waissman Vilanova

Universidad de Sonora
julio.waissman@unison.mx


mailto:julio.waissman@unison.mx

Introduccidén operacional: predictores

y=wi-x+b=w-¢), d(x) = [1,x]

J=wy, - x2+w;-x+b=w-p(), d(x) = [1,x,x?]

y=w-a(V- ), ¢(x) = [1,x]




Ejemplo clasico

El problema de la Xor
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Solucion por partes (mas de una capa)

El problema de la Xor
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Reescribiendolo en forma vectorial

h1(513’> — 1::81 — Lo > 1] — 1[[—1,—|—1, —1] . [1,5[31,5132] > O]

hg(ﬂ?) = ].:5132 — T > 1] = 1[[—1, —1,—|—1] . [1,331,1132]
_ -1 41 -1 1] _
h(ZC) =1 [ 1 -1 +1 ] I Z 0

f(x) = sign(hi(z) + ho(x)) = sign([L, 1] - h(z))



Evitando la funcion indicadora

La derivada de una funcion indicadora es la delta de Dirac

hi(x) =o(vy -
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Solucion al problema de la Xor

Unared neuronal con una capaoculta
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h(x) se puede interpretar como una ingenieria de caracteristicas automatizada



Generalizando la solucion a otros problemas
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Sin capas ocultas

Una capa oculta

Dos capas ocultas



¢Por gué mas de una capa oculta?

PV ) h0 e he(x)

—~ . - — score
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[ Dos capas ocultas es un aproximador universal
O Mdltiples niveles de abstraccion
[ Empiricamente funciona

1 Falta comprension tedrica de lo que pasa



Aprendizaje en redes neuronales

Es un problema de optimizacion por descenso de gradiente

’ 9,
(—)J = ()J — OT] ((_)(_)a (—)l)

T 00,

Learning Rate



Aprendizaje en redes neuronales

Es un problema de optimizacidon por descenso de gradiente

minvy w TrainLoss(V, w)

Linear predictors Neural networks

(convex) (non-convex)



Ejemplo de descenso de gradiente

Para un problema con 3 capas ocultas

Loss(:c, Y, V1, Vo, Vg,W) = (W ' U(VSU(V2U(V1¢($)))) — y)2

Vl < Vl — an1 I_OSS(.CE, y7V17V27 V37W)
VQ A V2 — anQ LOSS(.CI?, y7V17V27 V37W)
V3 < V3 — an:s LOSS($,y,V1,V2,V3,W)

W — W — anLOSS(x7y7V17V27V37W)



cComo resolvemos esto de manera eficiente?

La idea detras de TensorFlow

Loss(x,y, V1, Vs, Vi, w) = (w-0(V30(Vaag(Vigp(x)))) — ?/)2

/[ Grafo computacional] ~N

Grafo aciclico dirigido coyo nodo raiz representa el final de una expresion
matematica, y cada nodo represeta subexpresiones intermediarias

. J

1 Una forma eficiente de realizar computo sin ejecutar operaciones innecesarias
U Abstraer la paralelizaciény la infraestructura detras de operaciones en tensores
U Diferenciacion automatica, para el calculo de gradientes

O Interfase sencilla a través de un lenguaje sencillo como python



.Y queé es un tensor?
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Tensor Algebra

N-way
tensor



Funciones como grafos

Las funciones son en tensores

(a+¢€)+b=c+ le
a+ (b+¢€)=c+ le

(a+ €)b=c+ be
a(b+ €) = c+ ae



Bloques basicos

Operaciones y gradientes en tensores

11 1 -1
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a b a b
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Composicion de tensores

Operaciones y gradientes en tensores

% — %% = (20)(2a) = 4a’



Unared simple con una capa oculta loss | (+)?

Operaciones y gradientes en tensores '
2(residual)

I
residual B

AN
Loss(z,y, V,w) = (w-o(Vo(z)) — y)2 g y

Score
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B-prop

Usando grafo computacional

()21

LOSS(ﬁU, y, W) — (W ) ¢(Qf) o y)2 2(resitdua|)

I
-s
l backpropagation /

Vwloss(z,y, w) = [6,12] I
{

O Forward pass: ¢(x) = [1,2]
Calcula y guarda cada activacioén (de hojas araiz) /

O Backward pass:
Calcula los gradientes (de la raiz a las hojas)
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